Optimal Normal Bases

نویسندگان

  • Shuhong Gao
  • Hendrik W. Lenstra
چکیده

Let K⊂L be a finite Galois extension of fields, of degree n. Let G be the Galois group, and let (σα)σ∈G be a normal basis for L over K. An argument due to Mullin, Onyszchuk, Vanstone and Wilson (Discrete Appl. Math. 22 (1988/89), 149–161) shows that the matrix that describes the map x7→αx on this basis has at least 2n−1 non-zero entries. If it contains exactly 2n−1 non-zero entries, then the normal basis is said to be optimal. In the present paper we determine all optimal normal bases. In the case that K is finite our result confirms a conjecture that was made by Mullin et al. on the basis of a computer search.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subquadratic Multiplication Using Optimal Normal Bases

Based on a recently proposed Toeplitz matrix-vector product approach, a subquadratic computational complexity scheme is presented for multiplications in binary extended finite fields using Type I and II optimal normal bases.

متن کامل

New Complexity Results for Field Multiplication using Optimal Normal Bases and Block Recombination

In this article, we propose new schemes for subquadratic arithmetic complexity multiplication in binary fields using optimal normal bases. The schemes are based on a recently proposed method known as block recombination, which efficiently computes the sum of two products of Toeplitz matrices and vectors. Specifically, here we take advantage of some structural properties of the matrices and vect...

متن کامل

Two Software Normal Basis Multiplication Algorithms for GF(2n)

In this paper, two different normal basis multiplication algorithms for software implementation are proposed over GF(2). The first algorithm is suitable for high complexity normal bases and the second algorithm is fast for type-I optimal normal bases and low complexity normal bases. The ANSI C source program is also included in this paper. Index Terms Finite field, normal basis, multiplication ...

متن کامل

The trace of an optimal normal element and low complexity normal bases

Let Fq be a finite field and consider an extension Fqn where an optimal normal element exists. Using the trace of an optimal normal element in Fqn , we provide low complexity normal elements in Fqm , with m = n/k. We give theorems for Type I and Type II optimal normal elements. When Type I normal elements are used with m = n/2, m odd and q even, our construction gives Type II optimal normal ele...

متن کامل

Gauss periods as constructions of low complexity normal bases

Optimal normal bases are special cases of the so-called Gauss periods (Disquisitiones Arithmeticae, Articles 343-366); in particular, optimal normal bases are Gauss periods of type (n,1) for any characteristic and type (n,2) for characteristic 2. We present the multiplication tables and complexities of Gauss periods of type (n, t) for all n and t = 3,4,5 over any finite field and give a slightl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Des. Codes Cryptography

دوره 2  شماره 

صفحات  -

تاریخ انتشار 1992